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Short Time Milling Experiments: 
Ø  Gas Atomization  Reaction Synthesis (GARS) 

Processing 
Ø  Microstructural comparison (direct consolidation 

vs. short ball milling) 
Ø  Hot rolling and annealing  
Ø  Mechanical Properties (hardness and hot tensile) 
 
Al Additions to ODS Ferritic Stainless Steel:  
Ø  Need for Al addition in Fe-based ODS 
Ø  Modified CR Alloy with Al addition 
Ø  Gas atomization experiment results 
Ø  Initial HIP consolidation of Fe-base ODS with Al 

Outline 
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Motivation 

Mechanical Alloying 

•  Long milling times (40-80 hr) 

•  Batch process 

•  Powder contamination 

•  Anisotropic microstructure 

Material  
Cost/kg 
(USD)  

Notes  

Ferritic 
Stainless Steel  

~$2-5 446 Plate form 

Fe-based ODS  
~$165, ~

$345 
MA956 Sheet (Special Metals) 

 PM 2000 (Plansee) 

ODS 
Processing 

Cost! 

-G.R. Odette et al.,  Annu. Rev. Mater. Res., 2008. 
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Gas Atomization Reaction Synthesis (GARS) 

In situ alloying addition of oxygen 

Ar-O2 

I.E. Anderson et al., USPTO no. 5,368,657, 1994. 4 

 
High speed video (4,000 fps) 

GARS Experimental Run 
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Y-enriched dispersoid 
formation 

Internal Oxygen Exchange Reactions 

Metastable Cr-Enriched Oxide 

Y-enriched intermetallic particles 

Oxygen 

Y-enriched oxide dispersoids 

Ø  Dissociation of Cr-enriched prior particle boundary 
(PPB) oxide (O reservoir) 

Ø  Internal oxidation of Y-enriched intermetallic  
compound (IMC)  precipitates 

Initial 
microstructure 

with continuous 
PPB oxide 

Dissociation of 
metastable PPB oxide  Y-enriched 

intermetallic 
formation 

Oxygen diffusion 

Completed oxygen  
exchange reaction  

(proper balance of Y and O) 

-I. Barin, et al., 1992 

I.E. Anderson et al., USPTO no. 5,368,657, 2010. 5 
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5µm 5µm 2µm 

Solidification Template → ODS Pattern Fe-15.84Cr-0.11Hf-0.18Y at.%  

Dia. 20-53μm Dia. 5-20μm Dia. < 5μm 

6 J.R. Rieken et al., J. Nucl. Mater., 2012. 

5 – 20 nm  
8x1021 m-3 

20 - 50 nm  
3x1021 m-3 

3 – 12 nm  
3x1022 m-3 

Heat Treated 1200°C – 2.5hr – Vac. 
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Atomized Powder 
(dia. < 20µm) 

HIPed 700°C 

H.T. 1200°C 

Hot Rolled 650°C 

Annealed 1000°C 

Hot tensile tested  
(RT - 800°C) 

HIPed 850°C 

H.T. 1000°C 

Hot Rolled 650°C 

Annealed 1000°C 

Hot tensile tested  
(RT - 800°C) 

Ball Milled 5 hr. (CM01) 
Dispersoid 
formation 

Grain 
Recrystallization 

Grain size  
Dispersoid spatial 

distribution 

GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O at% 

Ø  Current state of atomization technology generates low yields of 
optimum (dia. < 5µm) powders that result in ideal ODS microstructure 
using direct consolidation  

*   J.R. Rieken et al., PowderMet, 2011 
** D.T. Hoelzer et al., J. Nucl. Mater., 2007 

* ** 
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Need for Powder Chemistry Control During Milling 

GA-130 
Atomized 

(A) 
 at.% 

Ball Milled 
(BM) 
at.% 

Fe Bal. Bal. 
Cr 16.3 15.8 
W 0.9 0.9 
Ti 0.62 0.61 

Y 0.08 0.08 

O 0.26 0.57 

Ni - 0.75 

Zr - 0.15 

Al - 0.11 

As-Atomized 

Ball Milled – 5hr  
(cold welding) 

Ø  Results in ~0.40 vol.% nano-metric 
Y-Ti-O dispersoid phase (Y2Ti2O7) 
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10µm 10µm 10µm 

Ti Reduced 
microsegregation 

Y Fe-Y 
Fe-Zr 

Refined Microsegregation GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O-0.75Ni-0.15Zr-0.11Al 
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Ø  Y and Ti microsegregation following atomization (possible Fe11TiY) 

Ø  Reduced microsegregation after 5 hr ball milling 

Y-Ti 
microsegregation  
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Y Ti 

10µm 10µm 10µm 
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HIPped Microstructure Compared 
A

to
m

iz
ed

 
Ba

ll 
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HIPed 700°C 
Grains Size: 1.9±0.5 µm 
PPB 

HIPed 850°C 
Grain Size: 0.4±0.1 µm 
PPB 
 

Fe2W 
Ø  Residual porosity 

Ø  Formation of Fe2W 
phase along cell 
boundaries 

Ø  Signification grain 
size reduction (5x) 

GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 
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Heat Treated Microstructure 
A

to
m

iz
ed
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H.T. 1200°C-2.5hr 

H.T. 1000°C-1hr 

Grain Size: ~3.3±0.7 µm 

Grain Size: ~0.8±0.1 µm 

Ø  More uniform 
distribution of W 
(Fe2W)  

Ø  Fe2W solvus ~800°C 

Ø  Grains pinned 
along PPBs 

GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 

Ø  No recrystallization 
observed (1000°C 
or 1200°C) 

Ø  Zener pinning 
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ODS Microstructure 
H.T. 1200°C-2.5hr 

H.T. 1000°C-1hr 

A
to
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iz

ed
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Y-Ti-O dispersoids: 3-20 nm 
No. Density: 1x1021 -2x1022 m-3 

Larger Y-enriched ppts 
along grain boundaries 

Y-Ti-O dispersoids: 1.5-6 nm 
No. Density: 1x1023 m-3 

GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 
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Hot Rolling (650°C) 

Atomized 

R.T. 75%  

Ball Milled 

R.T. 65% 

Edge Cracks 

Ø  650°C – 30 min. 
initial soak time 

Ø  ~9% R.T./pass 

Ø  10 min. hold at 
650°C between 
passes (limited 
recovery) 

GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 
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Hot Rolled and Annealed 1000°C 
A

to
m

iz
ed
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Grain Size: 3.8±2.2 µm 

⊥  Rolling Direction Grain Size: 10.6±3.0 µm Ø  Recrystallization 
(abnormal grain 
growth) during 
1000°C anneal 

Ø  Grains grown 
beyond PPBs 
(improved ductility) 

Ø  Partial dynamic grain 
recrystallization 
during hot rolling or 
during 1000°C 
anneal?  

 
Ø  Need for deformation 

processing map 

GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 

⊥  Rolling Direction 
~70% Recrystallized 
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Final ODS Microstructure 
A
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Hot Rolled 650°C 
Annealed 1000°C-1hr 

Hot Rolled 650°C 
Annealed 1000°C-1hr 

Y-Ti-O dispersoids: 3-50 nm 
No. Density: 8x1021 -2x1022 m-3 

Y-Ti-O dispersoids: 1.5-25 nm 
No. Density: 7x1022 -1x1023 m-3 

Larger Y-Ti oxides along 
grain boundaries 

Ti-enriched oxides 

GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 
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GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 

Fe-M2,3  
Jump Ratio, 5sec 

Ti-M2,3  
Jump Ratio, 5sec 

Y-M4,5  
Jump Ratio, 50sec 

O-K  
3-Map, 30sec 

Fe-M2,3  
Jump Ratio, 5sec 

Ti-M2,3  
Jump Ratio, 5sec 

Y-M4,5  
Jump Ratio, 50sec 

O-K  
3-Map, 30sec 

Atomized 

Ball Milled 
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Microhardness 
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Commercial 
ODS Alloy 

Ball Milled 
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GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 
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A. Alamo et al., CEA/Saclay, DOE/CEA I-NERI Prog. Review, 2003 
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Localized Microhardness 

Unrecrystallized 
344 (kg mm-2) 

Recrystallized 
268 (kg mm-2) 
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GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 

Ø  Microhardness as a function of grain size 
agrees well with previously presented 
results on fine and coarse grained PM2000 
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Commercial 
ODS Alloy 

-A. Alamo et al., CEA/Saclay, DOE/CEA I-NERI Prog. Review, 2003 
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Elevated Temp. Tensile Strength GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 

Alloy Dispersoid (vol.%) Grain Size (µm) 

MA-957 (fine) ~1.0 Unrecrystallized (dia. < 1) 

GA-130A ~0.4 Recrystallized (10.6 ±3.0)  

GA-130BM ~0.4 Partially recrystallized (3.8 ±2.2) 

PM2000 (coarse) ~1.0 Recrystallized (~500-1,000) 

PM2000 (fine) ~1.0 Unrecrystallized (dia. < 10) 

J.J. Fischer, US Patent 4,075,010,21, 1978 (MA-957) 
A. Alamo et al., CEA/Saclay, DOE/CEA I-NERI Prog. Review, 2003 
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Enhanced Total Elongation GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 

Ø  GA-130A and GA-130BM illustrate good ductility with only modest decrease in 
elevated temperature ductility (800°C) compared to PM2000, possibly related to 
residual PPB oxide (GA-130A) or contamination (GA-130BM) 

Ø  Ductility peak (800°C) associated with transition between transgranular and 
intergranular fracture 

 
-A. Steckmeyer et al., J. Nucl. Mater., 2010. 

BM A 

800°C 

J.J. Fischer, US Patent 4,075,010,21, 1978 (MA-957) 
A. Alamo et al., CEA/Saclay, DOE/CEA I-NERI Prog. Review, 2003 
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GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 
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Room Temp. Tensile 

Room Temp. Tensile 
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GA-130A: Fe-16.3Cr-0.9W-0.6Ti-0.08Y-0.26O 
GA-130BM: Fe-15.8Cr-0.9W-0.6Ti-0.08Y-0.57O 

Ø  Two manufacturing routes were highlighted as viable methods for 
improved processing efficiency of Fe-based ODS alloys (i.e., direct 
consolidation or short ball milling of GARS powders)  

Ø  Short ball milling (5 hr) of GARS powders resulted in reduced Y-
microsegregation, yielding smaller and more uniformly distributed nano-
metric oxide dispersoids (Y-Ti-O) 

Ø  Both alloys illustrated good workability at 650°C (rolled to ~65% RT) 

Ø  Partial or full recrystallization occurred during 1000°C anneal following 
hot rolling (need for deformation processing map) 

Ø  GA-130A (direct consolidation) displayed hot tensile properties similar to 
recrystallized PM2000, while GA-130BM (ball milled) exhibited strengths 
similar to unrecrystallized PM2000, and both alloys showed good high 
temperature ductility (T.E. ≥ 40% at 800°C)  
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Advanced Ultra-Supercritical Power Plants (A-USC) 

•  Boiler tubing exposed to two extreme 
environments 
–  Outside exposed to sulfidizing 

environments (fireside) 
–  Inside exposed to supercritical steam 

(steamside) 

Schematic of Coal-fired Power Plant  

•  Increases in pressure and temperature 
planned for commercial plants to 
increase efficiency. 

•  A-USC conditions of 760°C, 35MPa 
–  Tubing may be at 785°C 

•  Lifetime of 60 years 
 
P.D. Sharma, Supercritical Coal-Fired Power Plant (2009) 

Operation Conditions in Japan. Fukuda, 
Adv. In Mat. Tech. for Fossil Power Plants, 6th 
International Conference , 2010. 
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Steamside Oxidation Resistant Alloy Design with Cr+Al 

Choices: 
•  Less than 16 wt% Cr to 

avoid thermal issues 
–  Previous ODS alloys 

contained too much Cr 

•  Design for conditions on 
steamside tubing 

•  Fireside will need to be 
protected by coatings 

•  Alloy selected with 
     16 at% Cr and 12 at% Al 

AL 
Alloy 

*Steam Conditions of 700°C with 10 vol% H2O  
and Air conditions at 800°C 

Oxidation Maps adapted from Pint and Wright, Mat Sci Forum, 
2004, Tomaszewicz and Wallark, Oxi. Of Met., 1983 
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Why Not Simple Al Addition to ODS Ferritic Steels? 

Adapted from Kimura et al., Jo.NM, 2011 

0 50 100 150 200 250 300 350 

16.5Cr+8Al+Zr 

16.5Cr+8Al+Hf 

16.5Cr+8Al 

16.5Cr 

UTS, MPa  

UTS vs Composition at 700°C 

16.5Cr Base:  Fe-16.5Cr-8Al-0.6W-0.17Ti-0.17Y (at.%) 

•  Large decrease in strength when 
Al added to traditional ODS 
–  Attributed to distribution of Y-Al 

oxide instead of Y-Ti 

•  Strength can be recovered 
through additions of Hf, Zr 

Free energy of formation for various oxides 

•  ZrO2 and HfO2 have higher negative 
free energy of formation than Al2O3  
–  Y-Hf,Zr complex oxides more favorable 

than Y-Al oxides 

•  TiO2 has a higher free energy of 
formation than Al2O3 
–  Y-Al oxides form in Ti containing alloys 
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Surface Oxide Penetration in Cast Alloys 

Fe-16Cr-10Al-0.2Y at% (BASE) BASE+0.25Ti at
% 

BASE+0.25Hf 

Fe-Y Intermetallic 

Al2O3 , HfO2 , Y2Hf2O7 

•  Rhines’ Pack used to simulate GARS 
exchange reaction (post-consolidation) 

•  HT with Cr-Cr2O3 at 1160°C for 10 hr. 
•  All alloys formed surface Al2O3 
•  Base and Ti-added samples had little to 

no oxygen penetration and formed 
some complex Y-Al oxides 

•  Hf-added sample had extensive 
oxygen penetration within cast 
microstructure – about 400 μm	  
–  Al2O3	  and	  HfO2	  were	  not	  present	  closer	  to	  

interface	  of	  reac7on	  

•  Hf	  addi7on	  seems	  to	  prevent	  Y	  
diffusion	  to	  surface	  to	  react	  with	  Al 
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Al Diffused into ODS Alloys 

•  ODS Alloys from GARS powders/HIP 
•  Diffusion couples were set up to 

investigate stability of previously 
formed Y-Hf or Y-Ti oxides 

•  Al content of approximately 18at.% 
was found in CR-164 and 13at.% in 
CR-166  

•  WDS analysis showed 
some oxides enriched in Y 
and Al in CR-166 with 
none in CR-164 

•  Y-Hf oxides stable 
•  Y-Ti oxides began 

conversion to Y-Al oxides 

CR-164 (Hf) CR-166 (Ti) 

Alloy	   Fe	   Cr	   Y	   Hf	   Ti	   O	  
CR-164	   Bal	   15.55	   0.09	   0.12	   0	   0.69	  
CR-166	   Bal	   15.91	   0.09	   0	   0.12	   0.42	  

Y-Al 
enriched 

Y-Hf enriched 

Al oxide from 
excess O 

HT at 1000°C for 24 hours 
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Selected ODS Precursor Powder Alloy Composition 

Comp 
(at.%) 

Comp 
(wt.%) Purpose 

Fe Bal. Bal. Base Material 

Cr 16 15.6 Corrosion 

Al 12 6.1 Corrosion 

W 0.9 3.1 Strengthening 

Hf 0.25 0.84 Dispersoid 

Y 0.2 0.33 Dispersoid 

•  Reduced Cr chosen to avoid embrittlement 
with sufficient Al for oxidation protection 

•  Designed to form 1 vol.% Y2Hf2O7  
•  Tungsten added as solid solution/Laves phase 

strengthening mechanism 
–  Also shown to benefit creep rupture strength  

•  Atomized with reaction gas of Ar-0.19vol% O2 
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Successful GARS Powder Production 
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Size Distribution 
MicroTrac 

Screens 

Alloy (at%)	   Fe	   Cr	   Al	   W	   Hf	   Y	  
Nominal	   Bal	   16	   12	   0.9	   0.25	   0.2	  

Actual	   Bal	   15	   12.3	   0.9	   0.24	   0.19	  

•  d50 = 27 μm	  
•  Composi7on	  verified	  through	  NSL	  analysis	  

–  Oxygen	  values	  taken	  from	  stack	  of	  screens	  

•  Surface Oxide Enriched in Y or Fe 	  

•  Reaction gas oxygen value tuned 
for fine powders (-10 μm) 
–  Finer particles will have increased 

oxygen (surface area) 
–  Oxygen in large powders can be 

increased through reactive 
processing (HVOF or ball milling) 
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Average Particle Size (μm) 
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Microsegregation Trend due to Rapid Solidification 

5μm 

•  Powders cold isostatic pressed with 
75vol% Cu to analyze cross-sections 
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Size Dependent Microsegregation 

•  Finer powders quenched (gas cooled) faster 
and display high undercooling. 

•  Solute segregation suppressed by rapid 
solidification 

•  Segregation size (spacing) should approach 
0 (solute trapping) at approximately 7 μm	  

•  Segrega7on	  phase	  enriched	  in	  Y	  and	  Hf	  
–  W	  not	  present	  in	  intercellular	  phase	  
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HIP Consolidation of Fine Powder 

•  Sieved to dia.< 20μm	  powder	  
•  Loaded	  in	  316	  SS	  can	  and	  outgassed	  
•  Vacuum	  sealed	  by	  e-‐beam	  welding	  	  
•  Consolida7on	  by	  hot	  isosta7c	  pressing	  (HIP)	  

–  Desired	  temperature	  of	  850°C	  300MPa	  for	  4h	  
–  Error	  caused	  HIP	  to	  stop	  at	  850°C	  200MPa	  for	  13h	  

then	  was	  raised	  to	  300MPa	  for	  4h 

Hf,Y 
enriched 

W 
enriched 

Porosity 
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Al Additions to ODS Ferritic Stainless Steel:  
Ø  Need for Al addition in Fe-based ODS 

 Designed alloy to resist steamside oxidation. 
Ø  Modified CR Alloy with Al addition 

 Developed Hf additive to assist in Al incorporation  in 
 ODS alloy. 

Ø  Gas atomization experiment results 
 Performed successful GARS experiment on Al 
 containing ODS alloy. 

Ø  Initial HIP consolidation of Fe-base ODS with Al 
 Will perform processing and characterization studies. 

Summary 
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